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Consider two systems of differential equations 

dX 
;Tt = j’ (x) (I*) 

which represent a motion in phase space on the .upper side. (+) and on 
the ,lower side*(-), respectively, of a given surface.’ 

F (2) = 0 (2) 

Aere I denotes an n-dimensional vector with coordinates ~1, . . . . x,,; 
the functions f ’ (x) are vector-valued, and the function P(z) is scalar- 
valued. 

It is supposed that the “upper” (l+ ), as well as the ‘lower” (1’ )* 
system of equations satisfies the usual conditions which guarantee 
existence and uniqueness of solutions fulfilling given initial conditions. 
and do not have singular points on the discontinuity surface. Indeed, the 
systems (I*) do not determine the transition conditions across the dis- 
continuity surface or the motion along it, which rem&ins to be determined. 
Thus, on the surface of discontinuity there may appear positions of 
equilibrium. 

In certain cases the question of the stability of these positions of 
equilibrium can be ascertained in a simple manner, starting from the new 
equations which have to be introduced to determine the problem and to 
detect the occurrence of equilibrium. In other, much more difficult. 

l In this paper, for brevity, we employ the terms Wsurface8 and “Plane’ 
instead of the usual terms l hypersurfaceW and ‘WPePPlane in n- 
dimensional space, respectively. 
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cases, in spite of equilibrium being governed by new equations, the 
equation of stability should be solved in principle from Equations ( 1). 

The present paper is devoted to the discussion of the stability of 
equilibrium positions which occur on the surface of discontinuity. 

This question, for second-order systems, was considered in [ 1 1. But 
the fundamental case, which will interest us here later, when the vector 
fields jf are tangent to the surface of discontinuity at the point 
under consideration, was not investigated in [ 1 1. In the case of arbi- 
trary order n, similar questions have been considered only for relay 

systems I2.3.4.5 I 

where A is a constant square matrix and x is a constant Vector, i.e. for 
systems which differ from the linear constant-coefficient systems only 
by a single nonlinear function of the relay type. We consider here the 
problem for differential equations of the type (If 1 with arbitrary 
right-hand sides. 

1. Determination of the motion in phase space. 'Ihe systems 
of equations (1’ ) determine tm vector fields on the surface of dis- 
continuity. Co nsl ‘d er one of them, for example the ‘upper” one, corre- 
sponding to the system (l+ 1. The surface of discontinuity is divided 
into domains, on each of which the vectors of the upper field are direct- 
ed toward a definite side of the surface (“into” the surface of ‘away 
from. it). These domains are separated by an n-2 dimensional manifold 
I? +. Along points of I? + the vector field is tangent* to the surface. 

Analogously, on the other side of the surface of discontinuity there 
are domains which are separated by a manifold K’^. 

Each point of the manifold I’ + (and analogously of I’- 1 is of one of 
two types, type A or type B (Fig. 11, depending upon the behavior of the 
phase trajectories of the system (l+ ) (correspondingly, of the system 
(l- )I in the neighborhood of the point. 

‘Ihe manifolds r + and IT - are divided into a #domain of gliding” C 
where the vectors of the upper and lower fields are directed opposite to 
each other (gcollidem, see Fig. 2s) and a regular part P where the 

* It is supposed that the phase trajectories of the systems (l+ 1 and 
(1-l may be tangent to the surface of discontinuity (2) only at 
isolated points, these points of tangency being simple (not multiple). 
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vectors do not cancel each other out (or ncolliden )* (Figs. 2b and 2c). 

FIG. 1. 

‘lhe motion of a representative point (or “particle-1 lying on the sur- 
face of discontinuity, proceeds as follows: 

1. The trajectories are always continuous. 

2. A particle which arrives at a point of the regular domain P of the 
surface of discontinuity from a half-space continues its motion into an- 

other half-space, moving along the trajectory which passes through the 
regular point t of the surface (Fig. 261. 

3. A particle on the domain of gliding C cannot continue its motion 
according to the systems (I* 1 and must proceed along C on the surface of 

discontinuity. In addition, the differential equations which specify this 

motion must be given. We shall call these the equations 5 (Cl. 

It is assumed that the singular points of the system (Cl do not lie on 

the boundary of the domain C. 

4. Suppose now that a particle passes through or is initially located 
at a point belonging to either of the manifolds r + or l-’ -. These mani- 

folds may be s&divided into n-2 dimensional domains + and Cr. From 

Inside the domain C there may be points at which the vector field is 
tangent to the surface. but such points are not of interest to us. 

In the case of Fig. 2b the particle, in general, does not proceed 
along the surface of discontinuity. If it is disturbed sligbtls at 
the initial moment, then the choice of the possible trajectories will 
be determined. 

Equations (C). generally speaking, are not related in any nay to equa- 
tions (I*). But, in a number of important special cases, the system 
(C) may be naturally defined in terms of (I* ). For more details con- 
cerning this, see [ 3.4.6.7 1. 
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FIG. 2. 

each point of + there issues at least one trajectory of the systems 
(l+ ), (1’ 1, K), while no trajectories issue out of points of Cr. 
when the particle lies in the domain +, then it departs along one of 
the trajectories*. If the particle is located on the domain Cr , then it 
proceeds further into the manifold CT in accordance with the system of 
equations (I’ >, which must be specified in addition. 

The particle may be located in the n-3 dimensional manifold G, the 
intersection of the domains & and Cp. But this manifold G may likewise 
be subdivided into domains** x P, and C,, and for 
addition, equations 02,) and so on. 

5. If the manifolds I? + and I’- coincide, then 
as in point 4 ahove. 

C, one must give, in 

the motion is determined 

The case when the manifolds I? + and r ’ have a lower dimensional in- 
tersection, is not considered in this paper. Hence the further motion of 
a particle in this situation is left out of account. 

‘Ihe equilibrium positions on the discontinuity surface may occur only 
at points of the domain C and the manifold JY’ which are singular for the 
(additional) systems of equations 0, 071, fG), and so forth. 

FIG. 3. 

* If there are several such trajectories, then the choice of a trajec- 
tory must be specified. 

** Out of every point of P there issues at least one trajectory of each 
of the systems (l+ 1, (1-I. (0, (rl. 
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Let US look at a particular case which will play an important role in 
what follows. In this case (Fig. 3) the manifolds K’ + and r - coincide, 

the point under consideration (position of equilibrium) belongs to the 

intersection of these manifolds, and both manifolds belong to type B 

(Fig. 1). In particular, on the discontinuity surface, on both sides of 
the coincident manifolds l?, regular domains are situated. 

If, in this case, the equilibrium position is a stable singular point 

of the system of equations (rl, then there arises the question of the 
stability of the position of equilibrium with respect to initial dis- 

turbances, chosen out of an arbitrary n-dimensional neighborhood of the 

positions of equilibrium. In order to answer this question it is neces- 

sary to study the behavior, in such a neighborhood, of the phase trajec- 
tories of the system (1 * 1. 

In all other (nonsingular) cases the trajectories of the system (1 * ) 
guarantee the motion of the particle in a small neighborhood or on the 

discontinuity surface, and the question of stability may be answered in 
an elementary way, provided that the stability or instability of the 

singular points of the systems (0, (I’ 1, (Cl, etc. is known. Hence, we 
shall deal only with the stability in the singular case. 

2. Formulas for point transformations in the singular casei. 
'Ihe point under consideration till be supposed to be at the origin of 

coordinates, and we shall assume that the functions f+ (xl, f’ (xl, and 

F(x) are either analytic or, in any case, sufficiently smooth* in a small 

neighborhood of the origin of coordinates. We are interested in the be- 
havior of the integral curves only in the neighborhood of the origin and, 

therefore, when we speak from now on of space, surface, plane, half-plane, 
and so forth, we shall mean by this their intersection with a sufficient- 

ly small neighborhood of the origin. 

Without loss of generality we may assume that the surface of discon- 

tinuity is the plane x, = 0 and that the n-2 dimensional manifold I?, 
consisting of the points at which the upper and the lower vector fields 

are simultaneously tangent to the surface of discontinuity, is defined 

* Each of the functions f+ (I) and f- (x) is defined, a whole 
neighborhood of point 0, but on one of portions 

is split by surface of discontinuity. 
ghen we speak of the analyticity and of the sufficient smoothness of 
these functions, we shall have in mind the possibility of extending 
the definition of these functions to a whole neighborhood of the point 
x = 0. 
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by the equations* xl = 0, X, = 0; the system (l+ ) acts for x, > 0, and 

(l- 1 acts for x, < 0. 

?he integral trajectories of the system (l+) determine a point 
transformation G, of the half-plane x1 > 0, x, = 0 into the half-plane 
x1 < 0, z,, = 0, and the trajectories of the system (l- ) define a point 
transformation G, of the half-plane x1 c 0, x, = 0 into the half-plane 
x1 z 0, x, = 0. A particle, proceeding along the integral curves of 
systems (l+ 1 and (l- 1, traverses arc lengths s1 and sz in times r1 and 

r2. The quantities sir s2, r1 and r2 are functions of the initial point 
x on the plane of discontinuity. 

The product of these two point transformations, G = GIG,, transforms 
the half-plane x1 > 0, n, = 0 into itself. All points of the manifold I? 
are fixed points of the three transformations G,, G,, G. 'Ihe stability 
of the fixed point x = 0, of the transformation G of the half-plane 
x1> 0, x, = 0 into itself, is equivalent to the stability of sn equi- 
librium position situated at the origin of coordinates** [8,9 I. 

Consider the expansion of the components of the field f+ (x) in the 

neighborhood of the origin of coordinates 

fj+(q,. . ., 2,) = cj+ -\ &+z* -)- . . . (i = i, . . ., II) 

In view of the fact that at all points of the manifold r the field 
vectors lie in the plane x,, = 0, the function f,,+(xl, . . . . x,1 must 
vanish for x1 = 0, x,, = 0. 

l The general case, when the surface of discontinuity is given by the 

equation xa = P(xl. . . . . X~_~ ) and the manifold r by the additional 

equation x1 = Q(z2, . . . , I,,_ 1), may be reduced to the case actually 
considered here by means of the transformation of variables: x~'.= 

x1 - Q(x,. .*.. rn_ 1), x2' = x2, . . . . x;_~ = 'n-l'. x/e= x, - 

PC%,, . ..* %a_& 

** in the paper [ 9 1 this assertion is proved for the stability of 

periodic motions. This proof will carry over to the case of the stabil- 

ity of equilibrium positions, if it is taken into account that the 
time r = f1 + r2 approaches zero as x approaches the origin 0. This 
is a consequence of the fact that the particle t-verses the arcs s1 
and s2 during the times r 1 and r2, times which approach zero as I + 0. 
and that the speed of traversal of these arcs approaches the lengths 

of the vectors f+ (0) and f- (0). which are finite and not zero, since, 
by assumption, the origin of coordinates is not a singular point of 
the system (l+ ) and (l-). 
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Hence 

fn+ (51, . . ., x72) = GIlAX f c**+.rn - - , . (2.1) 

'lhen, for the integral curve of the system (l+ ) which passes through 
the origin of coordinates (this curve WcutsW the plane n, = 0, since it 
has a contact of type B there) the dependence of the coordinate n,, on the 
time has the form 

2-n = $jn+(0)t? -+ . . . (2.2) 

and, as is easily seen from (2.0, one has that f'+ (0) = cl+cnI+. From 
the fact that this curve lies only on one side of the plane x, = 0 it 
follows that the expansion begins with an even power of t. In the follow- 
ing we shall consider only the fundwtal case* when this expansion be- 
gins with terms of order t*, i.e. when cl+ f 0 and car+ f 0. 

In order to obtain formulas for the transformation G,, let us write 
the equations of the integral curves of the system (l+) which issue 
from the point (xl, . . . . xn_ 1, 0): 

(2.3) 

yj = xj -:- tfj+(q,. . ., z,__1, 0) + a Pf;.+(q, . . ., &l-l, 0) + . . . (j = 1,. . ., n) 

and let us put, in the last equation, (for j = n), ya = x, = 0. 

From the resulting equation, employing in an essential way the condi- 
tions cl+ f 0, cnl+ f 0, we obtain the time t = r1 in the form of a 
series in xl, ***I ""__l' Putting this series in place of t in the re- 
maining equations (2.3), we obtain the formulas for the transformation 
G 1’ 

Since all points of the manifold I' (x, = 0) are fixed points of the 
mapping G,, the formulas defining the transformation G, have the follow- 
ing form: 

y, = ~)~xi -:- xlyl(x), yj = b+, + 2j -+ zlyj (rj (i = 2, . . . . n-1) (2.4) 

where the functions 4,(x), l *a, 4 n- 1 (x) h ave power series expansions 
which begin with linear terms. 

The above process leads to the formulas 

bj-2g (j=Z,. . ., n-l) (2.5) 

l See footnote, p. 407. In the case of a contact of type B. one has 
that c~“c,,~” < 0. Since in the case under consideration cl+ < 0. it 
follows that c,,~+ > 0. 
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Formulas (2.4) were obtained under the assumption that after a time 

r1 the integral curves transform a point of the half-plane x1 '> 0, x,= 0 
into a point with x1 < 0, x,, = 0. On the other hand, these formulas may 
be applied also to points on the half-plane x1 < 0, and then for negative 
values of f1 the integral curves lead back to the initial points on the 
half-plane x1 > 0, x, = 0. In this sense the transformation (2.4) may be 
considered as a transformation of the whole plane into itself (see Sec- 
tion 2) involving only the integral curves of the system (l+ 1. This 
transformation is an involution, i.e. it coincides with its own inverse 
transformation. Iherefore 

Xl = PlYl + Jr?1 (Y), Xj = bj!/l$ Yj + YlTj (Y) (i = 2, . . ., n- 1) (2.6) 

Substituting from the first of the equations (2.4) into the right- 
hand side of the first of the equations (2.6), we obtain that p12 = 1; 
consequently p1 = - 1. ('lhe possibility p1 = + 1 is excluded, since C, 
transforms the half-plane xl > 0 into the half-plane x1 < 0.) 

In particular, pl = - 1 implies thatxl&(x) =Y~c&(Y). Taking into 
account the first equation of (2.41 and eliminating x1, we obtain 
&(x) = [q+(x) - 11$,(y). Putting here x1 = 0, so that then n = y, it 
follows that 

29r(2)= [~r(r)12 for q=O 

lhe expansion of +l(~) does not have a constant term; hence &(O)=O 
for x1 = 0. Rut then C+,(X) = x,$(x) and Formulas (2.4) for G, become 

Y1= -% + +JJ(r), yj =bjrj i-Xl(9j (X) (i = 2, . . . . n- 1) (2.7) 

where the series expansions in x of the functions 9(x), contrary to what 
happens to the functions ~j(X), may begin with a constant term. 

In an entirely analogous manner, the point transformation G, is found 
to be given by the formulas 

(2.8) 
r,'l) = - y1+ Y# (Y), Xj(l) = bj”yl + yj + ylpj” (y) (j=2,...,n-I) 

From (2.7) and (2.8) we obtain the following formulas for the trans- 
formation G = G1G2: 

2r'l) = 21 + 2,2g(x), CX"j(l) z SjX, + Xj + Xlgj (2) (j = 2, . . ., n- 1) (2.9) 

where 

Si = bi - bi” (j = 2. . . ., 12 - 1) (2.10) 

s(r) = -9(x) + [X19(~) - U2$(?/) (2.11) 

o"j(X> = Yj(r) -kbj"W$(X) +- [Xlti)($>- I]~pj"(y) (j = 2,..., n- 1) 
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Here, y is given as fuaction of x by Equations (2.7). The expansions 
of the functions gl(x), l **f g,-1 (x) begins with linear terms, and g(O) 
may differ from zero. Employing (2.5) and au analogous formula for hi*, 

Equation f2.10) yields 

It should be noticed that the point tr~fo~tion of the half-plane 
xl > 0, xn = 0 into itself which has been obtained in (2.91, involves 
the critical case, since all roots of the characteristic equation rela- 
tive to the linear part of the transformation G are equal to unity. 

3. Discussion of the stebility in the singular case. I& us 
prove that the position of equilibrium r = 0 is unstable whem the vectors 

f+ (0) and f-(O) are non-cofiuear (i.e. not all fj = 0). If all these 
vectors are colinear (all Si = 0) then we shall grve both a stability and 
an instability condition. 

Lemma. If the fixed point x = 0 of the point transformation of the 

h8lf-space x1 > 0 into itself is stable, and if the first of the equa- 
tions which define this transformation has the form 

S+(1) = x1 i_ z1”g (2) (3.1) 

then one has for the iterations 

$1(0f -/- zxfl) + Xl@) + , . . = 00 (Xl@) = 21 > 0) (3.2) 

Proof.* Let us choose a sufficiently large number Y> 0 such that the 
followfng Inequalities hold: 

1&)f<M, pl<& (k = 0, 1, 2, . . .) (3.3) 

whenever 1 x C A, sl> 0. Then, from (3.1) and (3.31, for these values 
of x re have 

ccl@) > X1- MX,” = X1(1 - Ma;,) > 0 (3.4) 

Let us consider the auxiliary scalar transformation 

a1 = a, (I- Ma,) (3.5) 

and its sequence of fterations 

* In the proof of the lemma we employ a reasoning which was used by 
Levi-Civtta [ 10 ] in discussing the two-sided stability (as t + f -1 
of fixed points of transformations of the tuo-dimensional plane into 

itself. 
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a,.+1 = CL, (1 - MC%%) (m = 1, 2, 1 . .) 

sys tens 415 

(3.6) 

Then. setting a@ = 

that ~1~‘) 

x1 > 0 and comparing (3.51 with (3.4) we obtain 
> a1 ? 0, and since 

it follows that r,(Z) > rl(l) - Mzi(l)’ > al - MaI = ae > 0 and, in. 

general, that 

rP1 > a, > 0 fm = i, 2, * * *) 

However, the following limit exists and is finite 

(3.7) 

m-i 

I = lim a, = lim a, fl (I - Mak) = X1 fi (1 - Mah.) 
?n-+o3 m+co k=O k=o 

From (3.61, letting II ++eo, it follows that 2 = Z(I - YZ), i.e. 2 = 0. 
As is well known, if 

E (1 - M&k) = 0 
k=O 

thenae+al+a3+ . . . =m. From this fact and from (3. ‘7). we conclude 
that ~~(‘1 + Xl(I) + xl(g) + . . . = OO, and the proof of the lemma is 

complete. 

Tkeorem I. If, in the particular case. at the position of equilibria 
x P 0 the right-hand sides of the equations (l+ 1 and (1” 1. i.e. the 
vectors f+ (0) and f- (01. are not colinear, then this position of equi- 
librium is stable. 

Proof. In view of the non-colinearity of the vectors f+ (0) and f- (01, 
in Formulas (2.9) at least one, the Si, is not zero. Suppose, for de- 
finiteness, that S2 f 0. Without loss of generality we may suppose that 
Sg > 0. since the ease Ss < 0 may be reduced to this merely by reversing 
the direction of the x2 axis. 

From (2.9) it follows that 

x?’ > 52 + g&x, 

whenever [X 1 < A for sufficiently small A > 0. 

(3.8) 

Let us suppose that the position of equilibriua under consideration 
is stable. Then the fixed point x = 0 of the transformation C which maps 
the n-l dimensional half-space x1 > 0, z,, = 0 into itself is stable. 
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This means that, for some 8 = 6(A) > 0, the inequalities > 0, 1 x1 x 1 < 6 it follows that 

(z(“)I < A, $‘>O (k = 0, 1, 2,...) 

Thus, iterating the inequality (3.8). we obtain 

m-4 

A > sim”’ > z2 + $8, 2 zik’ (n = 0, I,...) 
k’s0 

But this implies that x1(‘) + zl(l) + xlf2) + . . . < 00, contradicting 
the lemma. Hence L = 0 is an unstabfe fixed point, and the theorem is 
proved. 

Lt us now suppose that all 

Sj = 0 

i. e. the vectors f+ (0) and f- 
(2.9) may be written in matrix 

(j = 2,..., n - 1) (3.9) 

(0) are colinear. In this case Fornmlas 
form 

231) = n: + 21 (AZ + 2) 63 3 0) (3.10) 

where 

a11 0 . . . 0 ” // 
a21 

A 
a22 . . .asl, 

E 

I 

hl = g (0)) (3.11) 
. . . . . . . . . . . 

ap1 ap2 * * . app 

and where z is a sm of nonlinear terms, and p = II - 1. ‘l’hus, we have 

the following theorems*: 

Theorem 2. The fixed point L = 0 of the mapping (of the half-space 
x1 > 0 into itself) given by (3.10) and the corresponding position of 
equilibrium I = 0 are stable whenever all eigenvalues of the matrix A 
possess negative real parts. The equilibrium position L = 0 is asymptotic- 
ally stable if the singular point L = 0 of the system (r) is asymptotic- 
ally stable. 

Theorem 3. The fixed point x = 0 of the transformation given by (3.10) 
and the corresponding position of equilibrium x = 0 are unstable when- 

* Theorem 2 is an extension of certain considerations of Gection 3 of 
the paper by Neiaark [ 8 I, which were employed. for relay systems, 
in C9 1. 
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ever at least one of the eigenvalues of the matrix A has a positive real 
part. 

Proof Of Theorer 2. If all Re X(A) < 0, then there exists a positive- 
definite quadratic form V(x, I), for which, in view of the linear system 
of equations dddt = AX, the derivative dV/dt = 257x, Ax) is a negative- 
definite quadratic form. Here we have denoted by V(x, y) the bilinear 
form which corresponds to the quadratic form V(X, x1. Then, for any 
vector x 

T’ (s, Ax) < - rV (.r, 2,) O+>O) 

Let 0 <c a; E *, Then 

+ + E* v (2, 2) ) (3.12) 

Choose the number Q* > 0 so small that the following inequality holds: 

‘ci (2, AX) + $ei v (As, As) < - (1. - a) v (z, 2) 

where rl > 0 is a sufficiently small number, smaller than l/2 r. Further, 
choose the number 6, > 0 so small that, for Vtx, x) < h we have: 

(1) the inequality 1 x 1 < E*, 

(2) the expression in the curly brackets in (3.12) is less than or 
equal to 

- (I’-2$V(2, x) 

(3) the inequality x1 r 0 implies the inequality xl(l) > 0. 

Then, setting q = r - 21) > 0 from (3.12) it follows that 

V[X+E(h+z), s$-E(A2+2)]~(1--qE)v(5, X) 

nprr I,- (x, x)<A, @,<E<c* 

Replacing CE by x1 > 0 in (3.13). and noting that 
we obtain 

(3.13) 

x + x,(Ax + z) = z(l) 

and, more generally 
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m-i 

T/’ (z’“‘, d”)) < v (z, z) J-J (1 - 2qQ”)) 
k=o 

(3.14) 

From this it follows that V(Z(“), ~(~~1 < V(r, x) < A, and thus 
1 .y < (i*. Xl (=I > 0 for sufficiently small A> 0. Thus it has been 
shown that x = 0 is a stable fixed point of the mapping C. 

According to the lemma proved above, xl(‘) + xl(‘) + ~~(~1 + . . . = EJ 

for x1 > 0. However, 

fi (1 - 2qsp) = 0 
k=O 

and, letting m + 00, from (3.14) we deduce that 

lim v (s(~), z(“)) = 0, Ior. 1 z(m) 1-0 for m 4 00 and q> 0 
m+co 

The proof of Theorem 2 is complete. 

Proof of Theorem 3. If at least once, we have Re A(A) > 0, then there 
exists a quadratic form V(x, x1, which takes on positive values at some 
points, satisfying 

V(2, Az)>pV(x, 5) + rlsl” (P > 0, r > 0) (3.15) 

We consider two different cases. 

First C~C. Suppose that V(Ax + Z, AZ + L) < 0. In this case, one ob- 
tains the inequalities (3.121, but with the sign < replaced by>. Pro- 
ceeding analogously to the proof of Theorem 2. we obtain, for 0 < t < t l , 
I%[ < A< c+, where c* and A are sufficiently small: 

v [a: + E (AZ + z), cc + 3 (-4X +z)l>(1+2p)J’@, ~)+~~bl’ (3.16) 

where Q is any positive number such that q < 2 r. 

Second ca*e. Suppose that V(Ax + z, AX + L) > 0. The relation (3.181 

holds, in view of (3.151, since in the present case 

choose x such that V(r, X) > 0 and zl > 0. Then, from (3.16) we obtain 

V[J:+E(AJ:+Z), x+--2 (Ax + z)] > V (5, z) + sq \ z 1” (3.17) 

Replacing 6 by ‘1 in (3.17). we obtain 
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Let 

v (x!l), :c+)) > V (2, 2) + 4X1 j X.1’ (3.M 

Then W > 0, and (3.18) yields 

V (z(l), 5(l)) > (I + hz,) v (s, 2) 
> (3.19) 

Let us suppose that the fixed point x = 0 of the transformation C, 
mapping the half-space x1 > 0 into itself, is stable. Then there exists 
a sufficiently small number 6 > 0 such that, for 1 x 1 < 6 and x1 > 0 all 

1 a~(~)\ < A and all xl(‘) > 0. Then 

??I+1 

v (x(m), :Oj) 2 V (x, X) 11 (‘1 + ~xJQ) (3.20) 
li=o 

But, according to the lemma, zl(‘) + xl(‘) + x1(*) + . . . = m, and 
hence 

From (3.20), since V(X. X) > 0, we have 

lim V (x(m), x:(m)) = 00 for m--, 00 

which contradicts the assumption that the fixed point x = 0 of the trans- 
formation C is stable. The theorem is proved. 

‘Ihcorems 2 and 3 give sufficient conditions for the stability and the 
instability of the position of equilibriun x = 0 in the case when the 

vectors f+ (0) and f- (0) are colinear. ‘Ihe elements of the matrix A 
which appears in these theorems may be imnediately expressed in terms of 

the coefficients of the power-series expansions of the functions fj+(x) 

fj-(%)’ 

jj'(2) = Cj' + i CjX'Xk+ i Cjhl'LTh.Z[$- . . 

Ii=1 li.I=l 

(j = I,..., n; Cj$ = Cjrk*) 

by means of the formulas 
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ajh. = c $ (CjC,k -- ‘l”jd]+ (I’, L=3, 3 )..., l-l) 

where we have used the notations 

[CD (c)l’ = CB (CG) - CD (c-) 

The expression for the elements abI with k > 1 is not given, since 
these elements have no influence on the eigenvalues of the matrix. 

The formulas given are obtained after the computation of the second- 
order terms on the right-hand sides of the equations defining the trans- 
formations G,, G,, and G. 
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